Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Year range
1.
Int J Pharm Pharm Sci ; 2019 Nov; 11(11): 38-42
Article | IMSEAR | ID: sea-205974

ABSTRACT

Objective: The proposed study is an attempt to determine antibacterial activity of synthesized novel 1-substituted-3-(4-oxo-2-phenylquinazolin-3(4H)-yl) urea and thiourea analogues as potent antibacterials against S. aureus and E. coli bacteria. Methods: The present study reports new series of 1-substituted-3-(4-oxo-2-phenylquinazolin-3(4H)-yl) urea and thiourea derivatives as potent antibacterial agents. Reagents used in the present study were of synthetic grade and solvents were used after distillation. Novel quinazolinone analogues were synthesized by considering substitution pattern, characterization of the synthesized analogues was performed using various techniques like Thin layer chromatography, Melting point, Infrared spectroscopy, Proton NMR spectrometry and Mass spectrometry. TLC of the synthesized analogues was carried out by using (toluene: methanol in the ratio 2:1), melting point was found by open capillary method, IR spectrum was recorded on JASCO V-530, 1H NMR was recorded on Bruker Avance Spectrometer and Mass spectra were obtained from G6460A, triple quadrupole/MS/MS system. In vitro antibacterial activity was performed against S. aureus and E. coli. Results: Six derivatives of quinazolinone analogues were synthesized. The structures of 1-substituted-3-(4-oxo-2-phenylquinazolin-3(4H)-yl) urea and thiourea derivatives were confirmed by physical and spectral analysis. Synthesized molecules showed Rf of 0.45-0.80 in toluene: methanol mobile phase, melting point was carried out by open capillary method and were in range of 90-210 ° C, IR spectrum was recorded in range of 14000-400 cm-1and showed characteristic peaks of NH and of C-O-NH, 1H NMR of the compounds was distinct to confirm structures with delta values in the range of 7.53-11.960, Mass spectra proved parent peaks of synthesized compounds confirming molecular weight. The compounds were assayed for antibacterial activity against S. aureus and E. coli using ciprofloxacin as standard. The synthesized analogues have shown good yield and comparable antibacterial. Conclusion: The present study delivers a convenient and efficient protocol for the quinazolinone analogues synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL